Attica Solar Power Information & Peak Sun Hours

Solar Green Energy Summary for Attica, Ohio

Lattitude: 41.0634

Sunlight

Fixed Tilt Sunlight Hours: 4 hours per day

1-Axis Tilt Sunlight Hours: 5.2 hours per day

2-Axis Tilt Sunlight Hours: 5.6 hours per day

The average peak sun hours of Attica is a crucial measurable component needed to efficiently implement a solar power system in a home or business. Put simply, peak sun hours are the hours of sunlight a day that are strong enough to be efficiently absorbed by solar panels and eventually turned into usable electricity. Not every minute of sunlight during a day is strong enough to be useful to a solar power system. Think about just minutes after the sunrises, which officially counts towards total hours of sunlight, but is usually too weak to be counted in peak sun hours because the strength of the solar insolation is not strong enough near the horizon to be absorbed and turned into electricity at an efficient rate. Times during the day like this, where the sun is out but not strong enough, are not counted as peak sun hours. In other words, the amount of peak sun hours in a location will theoretically always be less than total sunlight hours for a given day.

The latitude at the equator of the earth is zero degrees. This is where sunlight strikes the earth most directly. Due to the earth's curved shape, sunlight hits at a various angles depending on location. As latitude increases, the further you are located from the equator and more variance you see in sunlight hours. The latitude of Attica is 41.1.

A tracking mount will increase the average peak sun hours for a solar power system. Think about a panel that is tracking the sun in the sky vs a panel that is fixed and not moving: you will see a higher efficiency ratio of productions. A 1-axis mount will track the sun from East to West from sunrise to sunset and move on a single axis of rotation. A 2-axis mount will track the Sun from East to West the same as a 1-axis mount would, but it will also track the angle of the sun in the sky as it slowly varies season to season. A 2-axis mount is more necessary in high latitude regions where the angle of the sun in the sky changes dramatically between each equinox.

Climate in your geographical region is a major factor that will influence average peak sun hours per year. If you live in a region that does not have a lot of completely sunny days, then cloud coverage will greatly influence solar insolation on any given day. Mountains and trees may also contribute to lower solar insolation if they block the sun from your panels at any given point of the day.

For a fixed mounted solar panel in Attica, meaning that the solar panel will not track the sun in the sky, once can expect about 4 average peak sun hours per day. A 1-axis mount would increase this number to 5.2 hours per day because the panel would be facing the sun throughout the day. A 2-axis system that tracks the sun in the sky every day of the year would get approximately 5.6 hours per day in Attica.


Solar Businesses in Attica, Ohio




Leave a Reply

Your email address will not be published.